Design a site like this with
Get started


Publications using the WASP climate model

Scientific publications using the WASP climate model:

Goodwin, P. (2021) Probabilistic projections of future warming and climate sensitivity trajectories, Oxford Open Climate Change, kgab007,

Goodwin, P. and Cael, B.B. (2021) Bayesian estimation of Earth’s climate sensitivity and transient climate response from observational warming and heat content datasets, Earth System Dynamics, 12, 709–723, 2021,

Brown, S., K. Jenkins, P. Goodwin, R.J. Nicholls, D. Lincke, A.T. Vafeidis, R.S.J. Tol, R. Jenkins, R. Warren, R.J. Nicholls, S. Jevrejeva, A. Sánchez-Arcilla, I. Haigh (2021) Global costs of protecting against sea-level rise at 1.5°C to 4.0°C, Climatic Change, 167, 4,

Goodwin, P., M. Leduc, A.-I. Partanen, H. D. Matthews, and A. Rogers (2020), A computationally efficient method for probabilistic local warming projections constrained by history matching and pattern scaling, demonstrated by WASP-LGRTC-1.0, Geoscientific Model Development, 13, 5389-5399,

Nicholls, Z.R.J., M. Meinshausen, J. Lewis, R. Gieseke, D. Dommenget, K. Dorheim, C.-S. Fan, J.S. Fuglestvedt, T. Gasser, U. Golüke, P. Goodwin, E. Kriegler, N.J. Leach, D. Marchegiani, Y. Quilcaille, B.H. Samset, M. Sandstad, A.N. Shiklomanov, R.B. Skeie, C.J. Smith, K. Tanaka, J. Tsutsui, and Z. Xie (2020) Reduced complexity model intercomparison project phase 1: Protocol, results and initial observations, Geoscientific Model Development, 13, 5175–5190,

Goodwin, P. (2019) Quantifying the terrestrial carbon feedback to anthropogenic carbon emission, Earth’s Future 7, 1417-1433,

Goodwin, P., R.G. Williams, V. Roussenov and A. Katavouta (2019) Climate sensitivity from both physical and carbon cycle feedbacks, Geophysical Research Letters, 46.

Goodwin, P. (2018). On the time evolution of climate sensitivity and future warming, Earth’s Future 6, EFT2466,

Goodwin, P., S. Brown, I. Haigh, R. Nicholls, and J. Matter (2018b). Adjusting Mitigation Pathways to stabilize climate at 1.5 and 2.0 °C rise in global temperatures to year 2300, Earth’s Future 6, 601-615,

Nicholls, R.J., S. Brown, P. Goodwin, T. Wahl, J. Lowe, M. Solan,J.A. Godbold, I.D. Haigh, D. Lincke, J. Hinkel, C. Wolff and J-L Merkens (2018) Stabilisation of global temperature at 1.5°C and 2.0°C: Implications for coastal areas, Philosophical Transactions of the Royal Society A

Goodwin, P., S. Brown, I. Haigh, R. Nicholls, and J. Matter (2018). Adjusting Mitigation Pathways to stabilize climate at 1.5 and 2.0 °C rise in global temperatures to year 2300, Earth’s Future.

Brown, S., R. Nicholls, P. Goodwin, I. Haigh, D. Lincke, A. Vafeidis, J. Hinkel (2018) Quantifying Land and People Exposed to Sea-Level Rise with No Mitigation and 1.5 and 2.0 °C Rise in Global Temperatures to Year 2300, Earth’s Future, doi:10.1002/2017EF000738.

Goodwin. P., A. Katavouta, V.M. Roussenov, G.L. Foster, E.J. Rohling and R.G. Williams, (2018) Pathways to 1.5 and 2 °C warming based on observational and geological constraints, Nature Geoscience 11, 102-107, doi:10.1038/s41561-017-0054-8.

Williams, R. G., V. Roussenov, T. L. Frölicher and P. Goodwin (2017), Drivers of continued surface warming after cessation of carbon emissions, Geophysical Research Letters, GRL56532, doi:10.1002/2017GL075080

Description of the sea level rise component in WASP:

Goodwin, P., I. D. Haigh, E. J. Rohling and A. Slangen (2017) A new method for projecting 21st century sea level rise and extremes, Earth’s Future 5, 240–253, doi:10.1002/2016EF000508. open access link

Original description of the WASP climate model:

Goodwin, P. (2016) How historic simulation-observation discrepancy affects future warming projections in a very large model ensemble, Climate Dynamics, CLDY-D-15-00368R2, doi: 10.1007/s00382-015-2960-z. open access link

Derivation of the equation WASP uses to calculate surface warming:

Goodwin, P., R.G. Williams and A. Ridgwell (2015), Sensitivity of climate to cumulative carbon emissions due to compensation of ocean heat and carbon uptake, Nature Geoscience, Vol. 8, p29-34. doi:10.1038/ngeo2304.

%d bloggers like this: