Publications

Publications using the WASP climate model

Scientific publications using the WASP climate model:

Goodwin, P., M. Leduc, A.-I. Partanen, H. D. Matthews, and A. Rogers (2020 in press), A computationally efficient method for probabilistic local warming projections constrained by history matching and pattern scaling, demonstrated by WASP-LGRTC-1.0, in press with Geoscientific Model Development.

Nicholls, Z.R.J., M. Meinshausen, J. Lewis, R. Gieseke, D. Dommenget, K. Dorheim, C.-S. Fan, J.S. Fuglestvedt, T. Gasser, U. Golüke, P. Goodwin, E. Kriegler, N.J. Leach, D. Marchegiani, Y. Quilcaille, B.H. Samset, M. Sandstad, A.N. Shiklomanov, R.B. Skeie, C.J. Smith, K. Tanaka, J. Tsutsui, and Z. Xie (2020 in press) Reduced complexity model intercomparison project phase 1: Protocol, results and initial observations, in press with Geoscientific Model Development.

Goodwin, P. (2019) Quantifying the terrestrial carbon feedback to anthropogenic carbon emission, Earth’s Future 7, 1417-1433, http://doi.org/10.1029/2019EF001258.

Goodwin, P., R.G. Williams, V. Roussenov and A. Katavouta (2019) Climate sensitivity from both physical and carbon cycle feedbacks, Geophysical Research Letters, 46. https://doi.org/10.1029/2019GL082887.

Goodwin, P. (2018). On the time evolution of climate sensitivity and future warming, Earth’s Future 6, EFT2466, https://doi.org/10.1029/2018EF000889.

Goodwin, P., S. Brown, I. Haigh, R. Nicholls, and J. Matter (2018b). Adjusting Mitigation Pathways to stabilize climate at 1.5 and 2.0 °C rise in global temperatures to year 2300, Earth’s Future 6, 601-615, https://doi.org/10.1002/2017EF000732.

Nicholls, R.J., S. Brown, P. Goodwin, T. Wahl, J. Lowe, M. Solan,J.A. Godbold, I.D. Haigh, D. Lincke, J. Hinkel, C. Wolff and J-L Merkens (2018) Stabilisation of global temperature at 1.5°C and 2.0°C: Implications for coastal areas, Philosophical Transactions of the Royal Society Ahttps://doi.org/10.1098/rsta.2016.0448.

Goodwin, P., S. Brown, I. Haigh, R. Nicholls, and J. Matter (2018). Adjusting Mitigation Pathways to stabilize climate at 1.5 and 2.0 °C rise in global temperatures to year 2300, Earth’s Future.

Brown, S., R. Nicholls, P. Goodwin, I. Haigh, D. Lincke, A. Vafeidis, J. Hinkel (2018) Quantifying Land and People Exposed to Sea-Level Rise with No Mitigation and 1.5 and 2.0 °C Rise in Global Temperatures to Year 2300, Earth’s Future, doi:10.1002/2017EF000738.

Goodwin. P., A. Katavouta, V.M. Roussenov, G.L. Foster, E.J. Rohling and R.G. Williams, (2018) Pathways to 1.5 and 2 °C warming based on observational and geological constraints, Nature Geoscience 11, 102-107, doi:10.1038/s41561-017-0054-8.

Williams, R. G., V. Roussenov, T. L. Frölicher and P. Goodwin (2017), Drivers of continued surface warming after cessation of carbon emissions, Geophysical Research Letters, GRL56532, doi:10.1002/2017GL075080

Description of the sea level rise component in WASP:

Goodwin, P., I. D. Haigh, E. J. Rohling and A. Slangen (2017) A new method for projecting 21st century sea level rise and extremes, Earth’s Future 5, 240–253, doi:10.1002/2016EF000508. open access link

Original description of the WASP climate model:

Goodwin, P. (2016) How historic simulation-observation discrepancy affects future warming projections in a very large model ensemble, Climate Dynamics, CLDY-D-15-00368R2, doi: 10.1007/s00382-015-2960-z. open access link

Derivation of the equation WASP uses to calculate surface warming:

Goodwin, P., R.G. Williams and A. Ridgwell (2015), Sensitivity of climate to cumulative carbon emissions due to compensation of ocean heat and carbon uptake, Nature Geoscience, Vol. 8, p29-34. doi:10.1038/ngeo2304.


Create your website with WordPress.com
Get started
%d bloggers like this: